
Hyperbolic Dependency Tree Visualization for Parser Evaluation
Le Wang∗ Yue Zhang† Lei Shi∗

ABSTRACT

We present a novel tool to visualize sentence dependency trees
in the hyperbolic layout, and to provide visual support for compar-
ative evaluation of parsing errors. Compared with the traditional
flat tree view in NLP tools, our hyperbolic visualization tool can
be more convenient for showing sentence structures and long-range
word dependencies. Our tool integrates a hyperbolic view with the
flat view, and supports the corpus-level error analysis. The tool
supports the effective dependency parser evaluation by combining
statistical analysis of error distributions, visual analysis of an indi-
vidual dependency tree, and an integrated online interface.

1 INTRODUCTION

Dependency parsing is the task of automatically analyzing the
syntax of natural language sentences according to dependency
grammars [3, 7]. For example, Figure 1 shows the dependency
structure of a sentence, where a directed link from “includes” to
“ads” represents a verb-object dependency. Dependency parsing is
useful for a wide range of tasks, including semantic role labeling,
information retrieval, question answering and machine translation.
Improving the accuracy of dependency parsers has been a major
research topic in the field of natural language processing(NLP).

Visualization has been widely used to help corpus linguists study
grammers, and to help computational linguists analyze dependency
parser outputs and to find their weaknesses. There are quite a few
NLP tools that focus on visualizing the dependency parsing results
or integrate the visualization as an important feature, such as Mal-
tEval [5], MaltDriver [2] and ViZPar [6]. In particular, the most
popular tool, MaltEval, provides several error statistics by compu-
tationally comparing outputs of a statistical parser and the corre-
sponding manually annotated gold trees.

MaltEval uses the flat tree representation in Figure 1, which is
adopted by most existing NLP tools. However, in light of the vi-
sualization objective and the tree comparison task, this flat view
design is not optimized for three major reasons. First, the result-
ing view normally fills a narrow rectangle with a large aspect ra-
tio, while the general recommendation for visualizations is to place
them in a square room best fit for modern interfaces. Second, the
flat view is more appropriate for the n-gram context, where the de-
pendent words are also close in the sentence, while a dependency
parse tree can have quite a lot of long-range dependencies. Third,
on the task of visual error comparison, the parsing errors can hap-
pen on the long-range dependency links, some of which cannot be
shown in a single flat view without scrolling in the interface. This
poses an additional cost in the linguistic analysis process.

The main innovation of this paper is to introduce the hyperbolic
radial tree layout [4], which has been well studied in the visualiza-
tion community, to the task of comparing dependency trees. On this
task, the hyperbolic tree view has the following advantages. First,

∗SKLCS, Institute of Software, Chinese Academy of Sciences, e-mail:
{wangl,shil}@ios.ac.cn. This work is supported by China National 973
project 2014CB340301, NSFC project No. 61379088.

†Singapore University of Technology and Design, e-mail:
yue zhang@sutd.edu.sg

the radial layout ensures a nearly circular shape in the final view,
which can be accommodated in a square panel without significant
distortions or scalings. Second, words having direct dependency
links are placed close to each other. Thus, the dependency context
and structure are better revealed through the visualization. Third,
in most cases, the parse tree of one sentence can be displayed in a
single view, and all the details of the output v.s. gold parse trees can
be compared side-by-side without need to scroll the panel.

In addition to the hyperbolic layout, we incorporate a few use-
ful features to the visual design, such as word indexing and vi-
sual error comparison, by learning from the classical design and
the specific task. Building over this visualization design, we have
developed a dependency parser evaluation system that integrates
the corpus-level parser error statistics with the sentence-level vi-
sual parsing result comparison. Notably, the system is implemented
in JavaScript and can be accessed via a web browser. Compared
to MaltEval, which is based on Java and requires PC-side installa-
tions, our system enjoys the best of the ubiquitous mobile comput-
ing trend in heterogeneous devices. An online demo is available at
http://211.147.15.14/hyperbolic/index.html .

2 COMPARISON OF PARSE TREE LAYOUTS

Here we make a comparison between four common visualization
techniques for dependency trees, including the flat view (Figure 1),
which has been used by most existing NLP tools, the hyperbolic
view we introduce (Figure 2), the hierarchical tree view (Figure 3),
which is used by ParseViz [1], and the force-directed layout for gen-
eral graphs (Figure 4). Each figure shows the dependency structure
of a sentence, in which the number inside a circle represents the in-
dex of the corresponding word in the sentence. In the flat view, the
label on each arrow represents the type of the dependency relation.
The flat view shows a given sentence in one line by the natural word
order, while the other views show a tree structures more saliently.

These layouts are different in the following aspects: First, in
terms of the space efficiency, given its flat shape, the flat view is the
weakest, while the others are stronger. The hyperbolic and force-
directed layouts can make full use of the square space as these as-
pect ratios are close to one, while the aspect ratio of the hierarchical
layout can be significantly larger. Compared with the force-directed
layout, the hyperbolic layout is more space efficient by folding pe-
ripheral nodes non-linearly.

Second, in terms of the dependency structure, the flat view repre-
sents dependency relations as polygonal lines with an arrow, while
the other views represent related words using directed tree edges.
According to the connectedness law in the Gestalt theory, human
has a tendency to perceive any uniform, connected line or area,
as a single unit. Thus, the other three views are better choices in
showing the dependency structure. For example, consider the de-
pendency relations of the root verb “includes”. In the flat view, the
words which depend on “includes” are difficult to find due to the
intricate polygonal lines, let alone the words beyond the flat view.
In the other views, the dependency relations of each word, such as
“includes”, are easy to interpret as they are directly connected by
the tree edges. In the flat view, the full tree structure of a sentence
cannot be perceived. On the other hand, the other layouts all show
the tree structure, in which the hierarchical view explicitly models
the top-down tree structure, at the expense of space efficiency.

Third, the viewing of long-range dependencies is important for
linguistic analysis. In the flat view, long-range dependencies, espe-



Figure 1: The flat tree view of the dependency structure (a scroll bar is necessary).

Figure 2: Hyperbolic tree visualization comparing the parser output with the reference.

Figure 3: Hierarchical Layout.

Figure 4: Force-directed Layout.

cially dependencies outside the view, cannot be displayed directly.
The hyperbolic and force-directed layouts show both long-range
and short-range dependencies in the same way using a short arc.

In summary, the flat view is strong in showing the actual word
order, while the force-directed and hyperbolic views are better in
showing the dependency syntax structure. The hierarchical layout
can be viewed as a compromise between the flat view and the force-
directed view, which keeps the word order but is less space effi-
cient. The hyperbolic view guarantees to show a full tree in limited
space by condensing peripheral nodes. Given that the error analy-
sis typically studies one node and its immediate context at a time,
we recommend the hyperbolic layout to visualize the dependency
structure. To compensate for the lack of natural word order in this
view, we associate it with the flat view in our system interface.

3 SYSTEM INTERFACE AND VISUAL DESIGN

The input to our system is a parser output corpus and option-
ally a gold-standard reference. Our system indexes a corpus by

the error distribution. A sentence can be selected according to the
different type in parsing errors in the corpus, including the part-of-
speech (POS) of incorrectly parsed words, the label of incorrectly
parsed dependency relations and the incorrectly parsed word. Each
sentence is visualized in the flat and hyperbolic views, juxtaposing
dependency parsing output and the reference.

In both views, we use red and blue to represent the incorrect re-
lations and the corresponding correct relations, respectively. For
example, in the flat view in Figure 1 and the hyperbolic view in
Figure 2, the relation between “includes” and “supplement” is red,
representing that the dependency relation of word “supplement” is
incorrect. Correspondingly, the correct relation, “largest” to “sup-
plement”, is shown as a blue edge in the right panel.

The hyperbolic view also supports the following interactions:
First, the user can drag and drop any word into the center, in or-
der to see its dependency context. In Figure 2, the word “includes”
is moved into center. In addition, the user can rotate the output and
references trees synchronously by selecting the check box “syn-
chronization”. Second, the user can check the incorrect and refer-
ence dependency relations of any word by moving the mouse over
the word in the view. For example, when mouse is hovered over the
node “on” whose index is 25 in the parser output view, as shown
in Figure 2, the correct dependency relation, “initiative”→“on”,
is shown by a dotted blue edge. At the same time, in the refer-
ence view, the incorrect dependency relation, “includes”→“on”, is
shown in a dotted red edge.

REFERENCES

[1] Parseviz. http://www.ark.cs.cmu.edu/parseviz/.
[2] M. Ballesteros and R. Carlini. Maltdiver: A transition-based parser

visualizer. In IJCNLP, 2013.
[3] S. Kübler, R. McDonald, and J. Nivre. Dependency parsing. Synthesis

Lectures on Human Language Technologies, 2009.
[4] J. Lamping, R. Rao, and P. Pirolli. A focus+ context technique based

on hyperbolic geometry for visualizing large hierarchies. In CHI, 1995.
[5] J. Nilsson and J. Nivre. Malteval: an evaluation and visualization tool

for dependency parsing. In LREC, 2008.
[6] I. Ortiz, M. Ballesteros Martı́nez, and Y. Zhang. Vizpar: A gui for zpar

with manual feature selection. SEPLN, 2014.
[7] Y. Zhang and J. Nivre. Transition-based dependency parsing with rich

non-local features. In ACL, 2011.

http://www.ark.cs.cmu.edu/parseviz/

	Introduction
	Comparison of Parse Tree Layouts
	System Interface and Visual Design

